144. 二叉树的前序遍历(Binary Tree Preorder Traversal)E

英文题目

  • Given the root of a binary tree, return the preorder traversal of its nodes' values.

  • Example 1:

  • Input: root = [1,null,2,3]
    Output: [1,2,3]
    
  • Example 2:

  • Input: root = []
    Output: []
    
  • Example 3:

  • Input: root = [1]
    Output: [1]
    
  • Example 4:

  • Input: root = [1,2]
    Output: [1,2]
    
  • Example 5:

  • Input: root = [1,null,2]
    Output: [1,2]
    
  • Constraints:

  • The number of nodes in the tree is in the range [0, 100].

  • -100 <= Node.val <= 100

  • Follow up:

  • Recursive solution is trivial, could you do it iteratively?

中文题目

  • 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

  • 示例 1:

  • 输入:root = [1,null,2,3]
    输出:[1,2,3]
    
  • 示例 2:

  • 输入:root = []
    输出:[]
    
  • 示例 3:

  • 输入:root = [1]
    输出:[1]
    
  • 示例 4:

  • 输入:root = [1,2]
    输出:[1,2]
    
  • 示例 5:

  • 输入:root = [1,null,2]
    输出:[1,2]
    
  • 提示:

  • 树中节点数目在范围 [0, 100] 内

  • -100 <= Node.val <= 100

  • 进阶:递归算法很简单,你可以通过迭代算法完成吗?

递归

  • 按照访问根节点-左子树-右子树的顺序遍历

  • 时间复杂度O(n),其中 n 是二叉树的节点数。每一个节点恰好被遍历一次

  • 空间复杂度O(n),为递归过程中栈的开销,平均情况下为 O(log⁡ n),最坏情况下树呈现链状,为 O(n)

    # python3: 时间 40 ms, 击败 66.00%; 内存 15.64 MB, 击败 43.47%
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
            self.res = []
            self.dfs(root)
            return self.res
        
        def dfs(self, root: Optional[TreeNode]) -> None:
            if not root:
                return
            self.res.append(root.val)
            self.dfs(root.left)
            self.dfs(root.right)
            
    
    // c++: 时间 4 ms, 击败 41.96%; 内存 8.2 MB, 击败 33.54%
    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            vector<int> res;
            dfs(res, root);
            return res;
        }
    
        void dfs(vector<int> &res, TreeNode* root) {
            if (root == nullptr) {
                return;
            }
            res.push_back(root->val);
            dfs(res, root->left);
            dfs(res, root->right);
        }
    };
    
    // java: 时间 4 ms, 击败 41.96%; 内存 8.2 MB, 击败 33.54%
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<Integer> preorderTraversal(TreeNode root) {
            List<Integer> res = new ArrayList<>();
            dfs(res, root);
            return res;
        }
    
        public void dfs(List<Integer> res, TreeNode root) {
            if (root == null) {
                return;
            }
            res.add(root.val);
            dfs(res, root.left);
            dfs(res, root.right);
        }
    }
    
    // go: 时间 0 ms, 击败 100%; 内存 1.83 MB, 击败 99.95%
    /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func preorderTraversal(root *TreeNode) []int {
        res := []int{}
        dfs(&res, root)
        return res
    }
    
    // 特别注意结果数组需要传递引用
    func dfs(res *[]int, root *TreeNode) {
        if root == nil {
            return
        }
        *res = append(*res, root.Val)
        dfs(res, root.Left)
        dfs(res, root.Right)
    }
    
    // javascript: 时间 68 ms, 击败 24.6%; 内存 41.1 MB, 击败 59.97%
    /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number[]}
     */
    var preorderTraversal = function(root) {
        let res = [];
        dfs(res, root);
        return res;
    };
    
    const dfs = function(res, root) {
        if (root == null) {
            return;
        }
        res.push(root.val);
        dfs(res, root.left);
        dfs(res, root.right);
    }
    

迭代

  • 使用栈,初始把根节点入栈

  • 当栈不为空时,把栈顶元素,即根节点值加入到结果中,然后先入栈右子树,再入栈左子树

  • 时间复杂度O(n),空间复杂度O(n)

    # python3: 时间 40 ms, 击败 66%; 内存 16.1 MB, 击败 21.79%
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
            res = []
            if not root:
                return res
            # 初始化栈,并将根节点入栈
            stack = [root]
            while stack:
                node = stack.pop()
                # 当栈不为空时,把栈顶元素,即根节点值加入到结果中
                res.append(node.val)
                # 如果 node 的右子树非空,将右子树入栈
                if node.right:
                    stack.append(node.right)
                # 如果 node 的左子树非空,将左子树入栈
                if node.left:
                    stack.append(node.left)
            return res
    
    // c++: 时间 0 ms, 击败 100%; 内存 8.1 MB, 击败 84.85%
    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            vector<int> res;
            if (root == nullptr) {
                return res;
            }
            stack<TreeNode*> st;
            st.push(root);
            while (!st.empty()) {
                TreeNode* node = st.top();
                st.pop();
                res.push_back(node->val);
                if (node->right != nullptr) {
                    st.push(node->right);
                }
                if (node->left != nullptr) {
                    st.push(node->left);
                }
            }
            return res;
        }
    };
    
    // java: 时间 0 ms, 击败 100%; 内存 39.6 MB, 击败 75.75%
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<Integer> preorderTraversal(TreeNode root) {
            List<Integer> res = new ArrayList<>();
            if (root == null) {
                return res;
            }
            Deque<TreeNode> stack = new LinkedList<>();
            stack.push(root);
            while (!stack.isEmpty()) {
                TreeNode node = stack.peek();
                stack.pop();
                res.add(node.val);
                if (node.right != null) {
                    stack.push(node.right);
                }
                if (node.left != null) {
                    stack.push(node.left);
                }
            }
            return res;
        }
    }
    
    // go: 时间 0 ms, 击败 100%; 内存 39.6 MB, 击败 75.75%
    /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func preorderTraversal(root *TreeNode) []int {
        res := []int{}
        if root == nil {
            return res
        }
        stack := []*TreeNode{root}
        for len(stack) > 0 {
            node := stack[len(stack)-1]
            stack = stack[:len(stack)-1]
            res = append(res, node.Val)
            if node.Right != nil {
                stack = append(stack, node.Right)
            }
            if node.Left != nil {
                stack = append(stack, node.Left)
            }
        }
        return res
    }
    
    // javascript: 
    /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number[]}
     */
    var preorderTraversal = function(root) {
        let res = [];
        if (root == null) {
            return res;
        }
        const stack = [root];
        while (stack.length) {
            node = stack.pop();
            res.push(node.val);
            if (node.right != null) {
                stack.push(node.right);
            }
            if (node.left != null) {
                stack.push(node.left);
            }
        }
        return res;
    };
    

Morris遍历

  • 参考:https://leetcode.cn/problems/binary-tree-preorder-traversal/solutions/656142/cer-cha-shu-san-chong-bian-li-qian-zhong-erk2/

  • 整体思路是,先建立根节点在中序遍历下的前驱节点和自身的连接,即上图 1 到 图 2,然后即可顺着上述连接遍历,返回根节点时,再断开连接

  • 分为4 步:

    • 1.从根节点开始,找到根节点在中序遍历下的前驱节点,建立连接(由上至下),向左子树前进
    • 2.左侧到头时,向右子树前进(由下至上),因此时右子树指向的是根节点,则回到了根节点
    • 3.由根节点再找一遍该根节点在中序遍历下的前驱节点,断开连接
    • 4.向右子树前进
  • 时间复杂度O(n),空间复杂度O(1)

    # python: 时间 44 ms, 击败 41.96%; 内存 15.9 MB, 击败 62.46%
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
            res = []
            if not root:
                return res
            cur = root
            while cur:
                curLeft = cur.left
                
                # 当左子树存在,即可建立前驱节点的连接
                if curLeft:
                    while curLeft.right and curLeft.right != cur:
                        # 此时curLeft是cur节点中序遍历的前驱节点
                        curLeft = curLeft.right
    
                    if not curLeft.right:
                        # 1.第一次是找前驱节点,并建立连接
                        curLeft.right = cur
                        # 这里输出的是有左子树的根节点
                        res.append(cur.val)
                        cur = cur.left # 2.不断向左子树前进
                        continue # 注意,先建立完所有左子树的连接
                    else:
                        # 3.此时是已返回了上层节点,再次找到前驱节点
                        # 断开连接
                        curLeft.right = None
                else:
                    # 当前节点无左子树,则可直接输出当前节点
                    res.append(cur.val)
                
                # 2、4.左子树到头了,向右子树前进,有两种可能:
                # 可能是树本身的右子树,也可能是在上面建立起来的到根节点连接
                cur = cur.right
            return res
    
    // c++: 时间 0 ms, 击败 100%; 内存 8.1 MB, 击败 78.71%
    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<int> preorderTraversal(TreeNode* root) {
            vector<int> res;
            if (root == nullptr) {
                return res;
            }
            TreeNode * cur = root;
            while (cur != nullptr) {
                TreeNode * curLeft = cur->left;
                if (curLeft != nullptr) {
                    while (curLeft->right != nullptr && curLeft->right != cur) {
                        curLeft = curLeft->right;
                    }
                    if (curLeft->right == nullptr) {
                        curLeft->right = cur;
                        res.push_back(cur->val);
                        cur = cur->left;
                        continue;
                    } else {
                        curLeft->right = nullptr;
                    }
                } else {
                    res.push_back(cur->val);
                }
                cur = cur->right;
            }
            return res;
        }
    };
    
    // java: 时间 0 ms, 击败 100%; 内存 39.6 MB, 击败 85.13%
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<Integer> preorderTraversal(TreeNode root) {
            List<Integer> res = new ArrayList<>();
            if (root == null) {
                return res;
            }
            TreeNode cur = root;
            while (cur != null) {
                TreeNode curLeft = cur.left;
                if (curLeft != null) {
                    while (curLeft.right != null && curLeft.right != cur) {
                        curLeft = curLeft.right;
                    }
                    if (curLeft.right == null) {
                        curLeft.right = cur;
                        res.add(cur.val);
                        cur = cur.left;
                        continue;
                    } else {
                        curLeft.right = null;
                    }
                } else {
                    res.add(cur.val);
                }
                cur = cur.right;
            }
            return res;
        }
    }
    
    // go: 时间 0 ms, 击败 100%; 内存 1.9 MB, 击败 80.46%
    /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func preorderTraversal(root *TreeNode) []int {
        res := []int{}
        if root == nil {
            return res
        }
        cur := root
        for cur != nil {
            curLeft := cur.Left
            if curLeft != nil {
                for curLeft.Right != nil && curLeft.Right != cur {
                    curLeft = curLeft.Right
                }
                if curLeft.Right == nil {
                    curLeft.Right = cur
                    res = append(res, cur.Val)
                    cur = cur.Left
                    continue
                } else {
                    curLeft.Right = nil
                }
            } else {
                res = append(res, cur.Val)
            }
            cur = cur.Right
        }
        return res
    }
    
    // javascript: 时间 60 ms, 击败 69.63%; 内存 41 MB, 击败 78.55%
    /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number[]}
     */
    var preorderTraversal = function(root) {
        let res = [];
        if (root == null) {
            return res;
        }
        let cur = root;
        while (cur != null) {
            let curLeft = cur.left;
            if (curLeft != null) {
                while (curLeft.right != null && curLeft.right != cur) {
                    curLeft = curLeft.right;
                }
                if (curLeft.right == null) {
                    curLeft.right = cur;
                    res.push(cur.val);
                    cur = cur.left;
                    continue;
                } else {
                    curLeft.right = null;
                }
            } else {
                res.push(cur.val);
            }
            cur = cur.right;
        }
        return res;
    };
    
Last Updated:
Contributors: Shiqi Lu